Budoucnost kosmických skafandrů  
Při zběžném pohledu na dnešní kosmonauty v porovnání se starými fotografiemi a záznamy, by se mohlo zdát, že se na poli vývoje kosmických skafandrů od 80. let minulého století nic moc neděje. Ano, dlouhou dobu to byla docela pravda. Ale nyní...

 

 

  S příchodem nových technologií a výrazných pokroků v materiálovém inženýrství i u skafandrů nastal čas pro nových  koncepcí. Skafandry pro nejbližší dekády, které jsou v poměrně pokročilém stádiu vývoje, stále hodně připomínají své starší bratříčky. Ovšem vesmírné obleky pro vzdálenější budoucnost, nacházející se ve stavu počítačových studií a prvních prototypů jsou natolik futuristické, až se zdráháme uvěřit, že by jednou mohly dojít reálného nasazení v kosmu.


Teoreticko-historický úvod

Kosmické skafandry se dělí na dvě základní skupiny: pro použití uvnitř kosmické lodi během kritických částí mise a pro použití ve volném kosmu, které jsou vlastně takovou nejmenší kosmickou lodí pro jednu osobu. V případě Gemini a Apolla byl ovšem použitý skafandr navržen pro obě varianty. Všechny bez výjimky používají kyslíkovou atmosféru, která umožňuje používat přibližně třetinový tlak oproti pozemskému normálu.

 

Zvětšit obrázek
Ed White nad Tichým oceánem . Gemini 4, 3.června 1965 (Zdroj: nasa.gov)

První skafandry vycházely z přetlakových obleků pilotů nadzvukových letadel. To se týkalo zejména projektu Mercury, kde posloužil Navy Mark IV. V Sovětském Svazu byl pro lodě Vostok určen skafandr Sokol-SK1 a jeho ženská varianta SK-2.


Lodě Gemini disponovaly skafandry upravenými pro pobyt ve volném kosmu. Těm posloužily jako základ obleky U.S.Air Force AP/22, kterým přibylo mimojiné několik vrstev mikrometeorické ochrany a klimatizační systém.


Teplákové soupravy Voschodů a prvních Sojuzů opravdu do kosmických skafandrů počítat nemůžeme. Skafandr Berkut,  který dopomohl Alexeji Leonovovi k první kosmické vycházce a zejména pak skafandr Krečet, jehož přímým nástupcem jsou dnešní kosmické skafandry typu Orlan, jsou hrdými představiteli prvních ruských obleků pro pobyt mimo loď (EVA – ExtraVehicular Activity). Krečet obvzláště, neboť se u něj prvně objevila koncepce „nalézání zezadu“, o které bude v článku ještě řeč. Škoda, že nakonec nebyl využit kvůli stopnutí ruského pilotovaného měsíčního programu.

 

Zvětšit obrázek
Zleva: André Kuipers, Oleg Kononěnko, Don Pettit ve skafandrech Sokol-KV2 (Zdroj: esa.int)


Jak bylo psáno výš, v prvních Sojuzech byli kosmonauti oblečeni pouze do teplákových souprav. To se Sovětům vymstilo v roce 1971, kdy při přistávání zahynula posádka Sojuzu 11. Více než dva roky trvalo, než se do kosmu vydala další posádka. Tentokrát jen dvoučlenná a v nových typech skafandru typu Sokol, které se v modernizované variantě používají dodnes. Zatím poslední typ nese označení Sokol-KV2.


Mise Apollo používaly univerzální skafandr A7L. Na cestě k Měsíci se počítal každý kilogram a tak by dva typy skafandrů byly zbytečný luxus. I z bezpečnostního hlediska bylo takové řešení velmi žádoucí. A7L se skládal ze třinácti vrstev, které měly chránit nejen před mikrometeoroidy, ale i před výkyvy teploty a radiací. Pilot velitelského modulu měl jednodušší skafandr složený ze tří vrstev, avšak pouze v případě, že jej nečekala kosmická vycházka. A7L používal na svou dobu pokrokové materiály jako polykarbonát, mylar nebo kapton. Jeho vývoj byl složitější i v tom, že jako doposud jediný byl využit pro pohyb po cizím kosmickém tělese, zatímco ostatní mají jako své pracovní prostředí volný vesmír navíc pod ochranným magnetickým polem Země.

 

Zvětšit obrázek
Porovnání obleku U.S.Air Force S1034 a ACES (Zdroj:nasa.gov)


I Američané si v 80.letech 20.století vyzkoušeli jaké to je létat do kosmu bez bezpečnostních skafandrů. Po havárii Challengeru se k nim opět vrátili v podobě známého oranžového Advance Crew Escape System Pressure Suit (ACES). Jeho oranžová barva měla sloužit k rychlému nalezení astronautů na vodní hladině, kam by přistáli na záchranném padáku, jenž byl jeho součástí. Kromě dalších bezpečnostních prvků byl součástí skafandru balíček pro přežití a nafukovací člun. NASA oděv ACES získala tak, že si přetvořila k obrazu svému přetlakový oblek pilotů letadel SR-71 Black Bird a U-2, U.S.Air Force S1034, který ovšem koncepčně vychází ze skafandrů pro Gemini. ACES se pak používal až do konce programu raketoplánů STS.
Věnujme se teď zase chvíli činnostem mimo kosmickou loď. Až do konce programu Apollo používali američtí astronauti různě modifikovaný skafandr A7L. Když bylo rozhodnuto, že Američané zůstanou na dlouhá léta přikováni s programem Space Shuttle k nízké oběžné dráze Země, bylo třeba vyvinout skafandr pouze pro pohyb ve volném kosmickém prostoru. V roce 1979 se objevil EMU (Extravehicular Mobility Unit). Na svou premiéru si však díky zpoždění vývoje raketoplánu musel počkat. Vycházel z modelu A7L, ovšem neměl pohyblivé klouby v dolní části, které již nebyly potřeba. Prodloužila se délka pobytu mimo loď až na 8,5 hodiny se záložní 30-ti minutovou rezervou a také celková trvanlivost. S tím se také zvedla hmotnost. Ta však není v prostředí mikrogravitace limitujícím faktorem. EMU je modulární, jednotlivé díly se sestavují podle tělesných proporcí astronauta či astronautky. Jeden exemplář lze použít až na 25 kosmických vycházek.

 

Zvětšit obrázek
Bruce McCandless s MMU (Zdroj: nasa.gov)


Velmi známou je také nástavba MMU (Manned Maneuvering Unit) někdy přezdívaná raketové křeslo. V tom si jako první poletoval Bruce McCandless volně vesmírem bez upoutání lanem. Jeho fotka se stala jedním z nejtypičtějších kosmických výjevů. Díky nadčasové koncepci se v mírně vylepšené podobě používá skafandr EMU dodnes. I MMU se v miniaturizované podobě stala jeho součástí. Ovšem spíše jako bezpečnostní pojistka.


Na ruské/sovětské straně se pro EVA v prvních Sojuzech používal skafandr vycházející z koncepce použité Leonovem ve Voschodu 2. Pak ale zvítězily Orlany, které se později osvědčily nejen na Sojuzech, ale také na stanicích Saljut a Mir. Jejich největší výhodou je krátký čas potřebný k oblečení. Pouhých 10 minut. Oproti více jak hodině, kterou trvá obléci si jeho americký protějšek EMU, je to neskutečná rychlost. Jeho nevýhodou je kratší doba pobytu oproti EMU (7 hodin) a nižší trvanlivost. Dnes se jejich nejmladší exemplář Orlan-MK používá na ISS.
Dlužno podotknout, že čínské skafandry vycházejí z ruských Sokolů a Orlanů. I když by se na nich našly modernizované prvky vlastní provenience.


Blízká budoucnost z Roskosmosu
To už se dostáváme do současnosti a blízké budoucnosti. Asi za dva roky má současný typ Orlan-MK nahradit modernizovaný Orlan-MKS. Na první pohled by měl vypadat skoro stejně. Díky použití polyuretanu místo gumy jako vnějšího pláště stoupne jeho pevnost a přitom se zlepší pružnost. Dále dostane skafandr systém automatické kontroly a ovládání klimatizace. V současném typu se teplota musela nastavovat ručně. Nově tak kosmonauti pouze nastaví jim vyhovující teplotu a systém jí bude sám udržovat ve stanovených mezích. Na řídícím panelu bude umístěn nový display s vysokým rozlišením. Oproti současnému Orlanu-MK je do konzole tak možné nahrát větší fotografie, podrobnější schémata, atd, která jsou mimo možnosti stávajícího zobrazovače . Životnost nového skafandru bude

 

Zvětšit obrázek
Skafandr Orlan-MT (Zdroj: spacesimulatorcenter.ru)


prodloužena minimálně na pět let (starý model slouží jen čtyři roky). Co se týče počtu výstupů do otevřeného vesmíru, životnost Orlanu-MKS bude zvýšena z 15 výstupů na 20. Celkem by měly být zaslány na ISS tři skafandry + jeden bonusový. Vše záleží ale na vytížení zásobovacích lodí Progress.


Pouze v počítači je zatím studie jeho nástupce Orlan-MT. Na obrázku vidíte přibližnou podobu. Nic bližšího k němu zatím není známo.


V rámci experimentu Mars-500 se testoval nový typ Orlanu a sice Orlan-E. Je určen pro autonomní pohyb po pevném povrchu větších kosmických těles například planet a měsíců, v tomto případě Marsu. Jeho povrch je opatřen vrstvou, která má co nejvíce odolávat ulpívajícímu prachu. Dolní část je narozdíl od beztížné verze vybavena ložisky a klouby, které mají umožnit chůzi. S ohýbáním to ani u nového modelu není příliš slavné. Při simulovaném výstupu na povrch si museli „kosmonauti“ pomáhat nástroji, které byly původně vyvinuty pro ruský měsíční program. Novinka má také integrovány do helmy výkonnější ledkové světlomety.

 

Zvětšit obrázek
Nastupování do skafandru Orlan-E (Zdroj: mars500.imbp.ru)
 
Zvětšit obrázek
Zleva D. Urbina a A.J. Smolejevskij při odběru vzorků (Zdroj: mars500.imbp.ru)
 
 
Zvětšit obrázek
Skafandry Orlan-E, patrně vyjma prostředního exempláře. (Zdroj: mars500.imbp.ru)

 


Rusové jsou na informace o novém skafandru poměrně skoupí, takže se lze jen dohadovat, co za typ skafandru je prostřední exemplář s helmou tvaru bubliny a tělem připomínajícím kyrys středověkého brnění. Jisté je, že se objevuje na fotografiích z 80.let, takže to žádná novinka nebude. Mohl by být předchůdcem nového amerického skafandru, ale o tom až později.

 

Zvětšit obrázek
Realita, nebo fikce designéra? To se dozvíte až v závěru článku.

Ještě nás čeká výprava do Země vycházejícího Slunce, kde také experimentují na poli nových skafandrů a pak do USA, jejichž astronauti si zatím jako jediní mohli vyzkoušet chůzi po jiném nebeském tělese. Zmíníme se o experimentálním prototypu  k návratu na Měsíc a výpravám k asteroidům a testech nového skafandru, který se bude testovat za pár let na ISS a v němž by jednou  astronauti také mohli chodit po Marsu. Zmíníme se i o ochranném skafandru pro kosmické turisty.

Skafandr made in Japan
Japonští vědci pracují od roku 2004 na svém vlastním univerzálním řešení kosmického obleku. Nemusejí začínat nazelené louce. Mnoho jich spolupracovalo se svými kolegy v USA na řešení pro nástupce současných skafandrů EMU.

Japonský přetlakový oděv (Zdroj:jaxa.jp)

 Bylo několik oblastí, kde cítili, že současné koncepty zaostávají. Předně to byla dlouhá doba přípravy na kosmickou vycházku způsobená tím, že díky používanému nižšímu tlaku a čisté kyslíkové atmosféře, je třeba nejprve vypudit dusík z těla, aby se předešlo dekompresní nemoci. Původně trvala příprava až 12 hodin. Díky novým metodám se čas zkrátil o několik hodin. Podle jednoho zdroje stačí v nutných případech jen 5 hodin, což je ale stále hodně. Pokud chceme zachovat aktuálně používaný tlak a složení atmosféry, je možné přímo na tělo astronauta obléci první vrstvu z elastického materiálu, která na tělo potřebný tlak vyvine. Navýhoda se projeví u částí těla jako je podpaží nebo rozkrok, kde oblek nedokáže dostatečně tlačit, což může způsobit problémy.


Jistějším řešením je tedy zvýšit celkový tlak ve skafandru a technologickými vychytávkami eliminovat nevýhody z tohoto řešení vyplývající. Touto cestou se japonci vydali. Zvýšili tlak na 0,58 – 0,65 atm (pro lepší představu bude tlak uváděn v zastaralých jednotkách Atmosféra, 1 atm = 101 325 Pa). Složení pak téměř odpovídá běžnému pozemskému vzduchu a zároveň atmosféře používané v dnešních kosmických lodích a stanicích – 21 % kyslíku a 79 % dusíku. Takový skafandr se pak dá použít i při nouzových situacích, kdy je třeba neprodleně opustit kosmický příbytek.


Největší nevýhodou je nižší mobilita. I v současných skafandrech je poměrně obtížné se pohybovat. Je nutný dlouhodobý trénink, při němž si osvojíte různé druhy pohybů, jež jsou odlišné od těch běžně používaných. Týká se to například ramenních kloubů, kde si musíte najít individuální způsob ohybu, při kterém vám bude skafandr klást co nejmenší odpor.

 

Studie japonského skafandru (Zzdroj:jaxa.jp)


Rukavice jsou pak samostatná kapitola. Proto je jim věnována zvláštní pozornost. Aktuálně se na jejich výrobu používá nylon. Pokud se nafoukne, ztvrdne, čož může způsobit při pohybu podráždění pokožky, odřeniny nebo zatrhnutí nehtů. Někteří astronauti z tzv. těžkých misí Apolla při několikadenních výpravách po měsíčním povrchu měli dokonce z rukavic prsty rozedřené do krve. Tyto nevýhody současných skafandrů jsou dokonce používány jako argument proti dlouhodobým výpravám na Měsíc s tím, že by tam astronauti po pár dnech nebyli schopni práce.


Tyto neduhy stávajících skafandrů mohly být způsobeny tím, že při jejich návrzích nebyl brán dostatečný zřetel na názory biologů a dalších medicínských odborníků, kteří by pomohli odladit skafandr tak, aby byl přívětivější lidské fyziologii.


Vyšší tlak musí být u rukavic kompenzován novými pružnými materiály, které pomohou kosmonautovi při ohýbání prstů. Vše se testuje v malé vakuové komoře, kde se zkoumá pohodlí při pohybu a síla, kterou je třeba vyvinout při ohýbání prstů.
Měřena je přístrojem Elektromyogram (obraz elektrické aktivity generované pohybem svalů). Experimenty prokázaly, že nově aplikované elastické materiály vyžadují méně úsilí k pohybu, než současný nepružný nylon. Podobně se dá postupovat i u loktů a kolen, které se stejně jako prsty ohýbají jedním směrem. Na ramena a boky, jež se otáčejí téměř libovolně, japonští vědci zatím podobně úspěšný recept nenašli.


Sama japonská agentura JAXA nevyvíjí nové materiály. Pouze kontaktuje tuzemské výrobce, kteří se vývojem a výrobou těchto materiálů zabývají. Což ovšem nevadí, neboť v Japonsku je špičkových firem v daném oboru dost. To je i případ další sekce vývoje, jež se zabývá chladícím systémem skafandru. Jelikož je skafandr především skvělou tepelnou izolací od okolního nepřátelského prostředí, je třeba lidské tělo neustále chladit, jinak by hrozilo přehřátí a zkolabování astronauta. Mise Gemini měly skafandry chlazené vzduchem. Ventilátor rozháněl vzduch, jenž pak odváděl přebytečné teplo. Na tento systém bylo pracující lidské tělo příliš velkým soustem. Pro „měsíční“ skafandry A7L byl proto vyvinut systém vodního chlazení. Přímo na těle měl kosmonaut přiléhavý oděv s trubičkami, jimiž proudila voda, kterou jednotka PLSS (Portable Life Support System  – přenosný systém podpory života) chladila. Tento systém se používá i v dnešních skafandrech a to jak amerických, tak ruských. Lidské tělo bez problémů uchladí na zvolenou teplotu. Co však nedokáže, je odvést lidský pot, takže kosmonaut je při vyčerpávající EVA jako ve vodní lázni.
Japonci proto přišli s hybridním systémem. Ten kombinuje oba způsoby chlazení, jak vodní tak vzduchový.

Zvětšit obrázek
Porovnání rozvodů chladící vody. Vlevo Apollo, vpravo japonský oblek (Zdroje: nasa.gov, jaxa.jp)

Speciální nanovlákna navíc dobře odvádí pot od pokožky, který pak postupně odpaří díky proudu vzduchu. Díky nanovláknům se zvyšuje i celková účinnost chlazení, z důvodu lepšího kontaktu pokožky s oděvem. Trubičky pro rozvod vody jsou o 30% menší než u stávajících skafandrů. Průměr trubičky je 3 mm. Tato spodní vrstva oděvu je tak pružnější, zařízení potřebuje méně vody, což šetří energii pro čerpadlo. Dalším vylepšením by mohlo být více paralelních vodních okruhů, což by také zvedlo razantně účinnost.


Japonští vědci se pokoušejí vylepšit i svrchní vrstvu mající za úkol chránit proti mikrometeoroidům a kosmickému smetí. Při simulačních testech zjistili, že současná ochrana skafandru je nedostatečná. Když dali jednotlivé vrstvy skafandru za sebe a pokoušeli se je prostřelit 0,5mm velkým hliníkovým projektilem rychlostí 7 km/s, zastavil se na sedmé vrstvě. Současný EMU má však podobné vrstvy jen dvě. V tomto případě však nemohou oznámit úspěšné vyřešení problému. Vhodný materiál, který by podobné ataky vydržel a přitom by byl v rámci možností pružný, zatím nenašli.


Celý výzkum vede k postavení prototypu, jenž by se mohl v příštích letech otestovat i na ISS. Japonci si dali i hmotnostní omezení. Celá sestava by neměla být těžší než 90 kg. To je nutné pro pobyt v prostředí gravitace, třeba na Měsíci. Skafandr by našel i nekosmické využití. Například by mohl posloužit hasičům při pohybu ve velmi horkých prostorách.


Ptáte se proč vlastně Japonci vyvíjejí skafandr, když nemají vlastní kosmické lodě? Odpovědí jsou nové programy navazující na současnou mezinárodní spolupráci v rámci provozování ISS. JAXA má již delší dobu v hledáčku Měsíc, konkrétně stálou lunární základnu. Poté, co se začnou rozdělovat jednotlivé úkoly mezi partnerské agentury, brzy dojde i na nové měsíční skafandry. Japonci pak mohou říci:“My jsme připraveni.“


USA: Testování skafandrů pro použití za oběžnou dráhu Země
Když na základech měsíčního A7L postavili Američané skafandr EMU, měli na hodně let vystaráno. Skutečně tento koncept vyvinutý pro použití k vycházkám z raketoplánů slouží s drobnými technickými vylepšeními na ISS dodnes. Ovšem už na konci 90.let 20.století NASA cítila, že nazrál čas pro jeho nástupce. Zadala proto veřejnou soutěž, kterou překvapivě vyhrála firma ILC Dover,  která má kromě dalších úspěšných kosmických aplikací na svědomí i předešlé obleky A7L a EMU.


44  Skafandr MARK-III  (Zdroj:nasa.gov)


Ta nejprve dodala typ I-suit. Ten sice hodně vychází z předešlého skafandru EMU. Narozdíl od něj se dá použít i pro kosmické vycházky po pevných tělesech s gravitací. Toho je docíleno nižší hmotností a větší mobilitou. Ocelové části byly nahrazeny titanem a hliníkové uhlíkovými kompozity. Horní část netvoří pevná krusta, ale několik vrstev měkkých materiálů. Na povrchu je nová tkanina tvořená pevnými a přitom pružnými vlákny Vectranu.   Díky tomu je skafandr odolnější vůči vysokým teplotám a ultrafialovému záření. Z Vectranu byly například airbagy sond přistávajících na Marsu. Používají ho i nafukovací moduly Bigelow Aerospace na oběžné dráze. Celý oblek je oproti EMU o 25 kg lehčí. 1.verze se oblékala podobně jako stávající skafandr, to znamená nejprve dolní část a poté nasadit horní. 2. verze je upravena pro nastupování zezadu, jaké léta používají ruské Orlany.


Výrazně robustněji působí skafandr Mark-III, který byl od počátku uzpůsoben pro nastupování zezadu. Robustní konstrukce je nutná z důvodu většího pracovního tlaku uvnitř. Použitých 0,57 atm dovoluje použít skafandr ihned bez nepříjemné a zdlouhavé přípravné fáze, kterou trpí současné EMU tlakované pouze na 0,3 atm. Tvoří jej horní krusta připojená přes ložisko v oblasti trupu na dolní pohyblivou část. Ta by měla umožnit ohnout nohu až do pokleku, čímž by astronaut mohl sbírat vzorky přímo rukavicí a nemusel by mít speciální kleště připojené k tyči. Pohodlný pohyb je zajištěn užitím ložisek a kloubů na všech potřebných místech.

Zvětšit obrázek
MARK-III na vozidle SEV (Zdroj:upload.wikimedia.org)

Přes svoji robustnost a vyšší hmotnost vykazuje podle vědců, kteří jej testovali, velmi slušnou pohyblivost. Kromě zkoušek v beztížném stavu, realizovaném pomocí letounu s parabolickou dráhou letu známého jako „blijící kometa“ se každoročně provádí cvičení v Arizonské poušti – Desert Rats.


 

Zvětšit obrázek
Schéma nastupování do skafandru ( Zdroj:upload.wikimedia.org )

Při něm se testují komplexní zařízení, jež mají být součástí budoucích měsíčních a marsovských základen. Kromě skafandru Mark-III prokázal své schopnosti i I-suit popisovaný výše. Dále se zkouší různé konstrukce habitatů, zásobovacích modulů, roverů a hermetizovaných vozidel SEV (Space Exploration Vehicle). Ty mají k novým skafandrům velmi blízko. Astronauti se SEVy mohou vyrážet na delší vzdálenosti od základny, přičemž skafandry mají připevněny zvnějšku přes tzv.suitport. Přímo do skafandru se pak vstupuje v místě připojení jednotky PLSS (viz. obrázek). To umožňuje velmi rychlé provedení EVA, přičemž skafandry nezabírají cenný prostor uvnitř. Doufejme, že lze použít i klasická cesta vstupním průlezem v případě, že dojde k poškození dokovacího portu nebo skafandru.


Modifikovaná verze SEVu by (samozřejmě bez kol) mohla sloužit i pro výpravy k asteroidům.
První nesmělé návrhy a první praktické zkoušky nastupování do kosmických obleků z vozidla SEV vypadaly spíše jako hra s kartonovými krabicemi. Pro odladění správných postupů a eliminování nefunkčních řešení je to ovšem nezbytné a při skutečné realizaci to ušetří spoustu problémů a tím pádem i financí.

 

Zvětšit obrázek
Testování na kartonových maketách (Zdroj:ansoncheungdesign.com)

Přestože je skafandr Mark-III v pokročilém stádiu vývoje, ostrého nasazení se zřejmě nedočká a bude dál sloužit pro pozemní testování. NASA se nyní přiklání spíše k verzím s měkkou horní částí.


USA: Nový kosmický oblek jako z Příběhu hraček

Posledními výrobky z dílny ILC Dover jsou skafandry série Z. První, s označením Z-1 by měl být jen testovacím prototypem. Na ISS se má podívat až jeho nástupce Z-2 ne dříve než v roce 2017.

Zvětšit obrázek
Ve skafandru Z-1 se půjde lépe ohnout (Zdroj:upload.wikimedia)

Z-série patří do skupiny měkkých skafandrů, takže umožňuje lepší ohýbání celého těla včetně horní části i když dost omezeně. Přesto je ho možné natlakovat na 0,58 atm, čili skoro jednou tolik, co současné EMU, takže i u něj odpadne zdlouhavá přípravná fáze. Stále se však používá kyslíková atmosféra.

 
O tom, jak dalece je Z-1 ohebný, nejlépe vypoví následující video. V prostředí vakua bude reálná pohyblivost o něco snížená.

 

 

Rovněž stejně jako Mark-III je Z-1 navržen pro možnost nastupování skrz suitport. K dispozici by nakonec měly být obě varianty: suitport nebo klasické nastupování odklopenou zadní částí.Hmotnost nového skafandru bude přibližně stejná nebo o málo vyšší než současného EMU. Proto se s ním počítá pro volný kosmický prostor (i asteroid) nebo Měsíc a další tělesa s podobnou nebo nižší gravitací.

 

Zvětšit obrázek
Jednotka NGLS. Vlevo návrh, vpravo skutečný prototyp. RCA označeno červenou šipkou (Zdroj:ntrs.nasa.gov)

Zajímavá je jednotka podpory života PLSS, v tomto případě NGLS (podpora života nové generace). Ta má dvě zásadní vylepšení. Jednak zařízení pro odebírání oxidu uhličitého a vodní páry (RCA - Rapid Cycle Amine) a pak zařízení pro variabilní regulaci kyslíku (VOR – Variable Oxygen Regulator).


Pokud jste dosud chtěli z dýchatelné atmosféry dostat pryč Co2, měli jste dvě možnosti, buď jednorázově použitelný hydroxid lithný (viz problémy na Apollu 13) /   nebo Metox, který se několik hodin regeneruje. RCA používá absorbční látku obsahující organické sloučeniny aminy,  jímající nejen oxid uhličitý, ale i vodní páru. Pro následnou regeneraci jednotky je třeba vystavit ji vakuu. Aby RCA fungovala nepřetržitě, skládá se ze dvou jednotek. Jedna absorbuje a druhá se regeneruje.


Druhé zařízení VOR nabízí astronautům jednu zásadní výhodu. Mohou do skafandru nastoupit bez přípravné fáze za maximálního provozního tlaku. Během přesunu na pracovní místo vně lodi nebo stanice se postupně tlak snižuje, aby šlo lépe pohybovat prsty a dalšími údy. Při návratu se použije obrácený postup. Celou touto procedurou se tak ušetří spoustu pracovního času astronautů.


 

Suborbitální záchranný skafandr (Zdroj:spxdaily.com)

Suborbitální skafandr je také třeba

Jen stručně k obleku, který připravují pro kosmické turisty a další „suborbitální“ kosmonauty dva vědci Dr. S. Alan Stern a Dr. Dan Durda. Má název CHAPS (Contingency Hypobaric Astronaut Protective Suit – ochranný astronautický oblek pro nenadálý pokles tlaku). Měl by se skládat z vnějšího pláště a několika vnitřních vrstev z trilaminátu. Tento materiál se používá zejména pro vojenské účely, ale pronikl i do civilního sektoru hlavně do lepšího vybavení pro outdoor. Má výhodu, že je odolný a přitom příjemný na nošení. V konstrukci skafandru jsou i další pokročilé materiály. Také bylo nutné zaimplementovat nové technologie, aby byl oblek plně funkční a přitom lehký a pohodlný.


Před dvěma lety byl testován ve středisku NASTAR (National AeroSpace Training and Research Center) v Philadelphii. Testy skafandru se týkaly přetížení. Konkrétně byl skafandr zkoušen v novém typu odstředivky, která maximálně napodobuje reálné přetížení při balistickém letu. To dosáhlo v testu až 6G.
Tento nový kosmický oblek by měl být určen pro využití jak ve vojenském, tak v komerčním sektoru provozování suborbitálních letů.


 

Zvětšit obrázek
Biosuit v celé své kráse (Zdroj:nasa.gov)

MIT přináší bio-oblek
Massachusetts Institute of Technology (MIT) je pověstný svou vynalézavostí a kreativitou. Často se dokáže blýsknout nějakou úžasnou technologií. Většinou se nejedná jen o nějaké designové studie, ale právě o celkově nebo alespoň částečně funkční prototypy.


Jedním z výkřiků poslední kosmické módy je koncept BioSuit. Na první pohled se zdá, že by se mohlo jednat o potápěčský skafandr. Když se dozvíte, že jeho využití spadá do kolonky kosmický oděv, říkáte si, že konečně někdo udělal pohodlný záchranný skafandr, takový modernější skafandr ACES známý z raketoplánů. Ale chyba lávky. Tento oblek je určen pro vycházky na Marsu.


Tým, který vede profesorka leteckých a kosmických inženýrských systémů Dava J. Newman se podíval na ochranu před nepřátelským prostředím a hlavně podtlakem z jiného úhlu. Jak zajistím, aby na tělo působil dostatečný tlak, který potřebuje pro svou správnou funkci? Buď mohu mít na sobě neforemný skafandr, který spoutá vzduch pod dostatečným tlakem uvnitř, takže moje svaly budou muset tento tlak překonávat. Nebo mohu na tělo působit mechanicky, čímž žádaný tlak vyvolám.


Tuto druhou cestu si právě Dava se svým týmem zvolila. Myšlenka to není úplně nová. Dokonce se dočkala omezené realizace v 70.letech minulého století, když ji 10 let předtím formuloval Dr. Paul Webb. Z jeho myšlenky povstaly aplikace, které dnes pomáhají stíhacím pilotům ve zdraví přežít vysoká přetížení. Ovšem použitelný kosmický skafandr se ke slovu dostává až nyní, když jsou k dispozici pokročilé materiály.


Jak už jsme se okrajově zmínili v kapitole o japonských skafandrech, tlakový oděv přilnutý ke kůži umožňuje tělu lepší pohyb. Bohužel na některé části těla se obtížně působí, neboť jsou „vybouleny“ opačným směrem. Proto při návrhu podobného oděvu musíte rozpitvat každé místo, každý záhyb na těle, ke kterému musí oděv dobře přilnout a to hlavně, když je tělo v pohybu.


Dava tvrdí, že to je technicky proveditelné, dokonce oblek směle nazývá druhou kůží. A hned kontruje dalšími výhodami těchto obleků oproti klasickým skafandrům. Pokud dojde k poškození klasického skafandru majícího za následek ztrátu tlaku, je kosmonaut vystaven smrtelnému nebezpečí a musí neprodleně ukončit vycházku. Jeho jediným cílem je tuto situaci přežít. Naproti tomu BioSuit je při podobném poškození možné zacelit speciální páskou a pokračovat s práci.


Nejlépe výhody BioSuitu ukazuje následující video:


 


 

Zvětšit obrázek
Studentka MIT Kristen Bethke pracuje na kloubu kolena BioSuitu (Zdroj:nasa.gov)

Když se podíváme na historii obleku blíže. Počátky jeho vývoje sahají do konce 90.let minulého století, kdy se konečně objevily dostatečně elastické moderní materiály jako Spandex a další syntetická vlákna s výjimečnou pružností. Paul Webb, který na vývoji BioSuitu spolupracuje dodnes, dal tehdy dohromady tým a započal s prací na prvních návrzích. Dnes je součástí týmu kromě studentů MITu také Jeff Hoffman, pětinásobný astronaut, který se účastnil i servisní mise k Hubbleovu kosmickému teleskopu nebo fyzik Dr. Arthur Iberall pracující na návrzích mobilních skafandrů. Dále pak povolal designové odborníky ze studia Trotti & Associates a inženýry z italské firmy Dainese, která se zabývá ochranými obleky a uhlíkovými kompozity pro motorkáře.


Před samotnou realizací bylo potřebné vytvořit složité trojrozměrné modely tělesných partií. Zmapovat pořádně linie kožního napětí. Pak se teprve přistoupilo k samotné realizaci.
Z obleku, který je předváděn jsou plně funkční pouze partie dolních končetin, které již byly úspěšně testovány ve vakuové komoře. Některé zbylé části těla zatím nejsou optimálně pokryty, což brání komplexní zkoušce. Problémem zůstává i umístění jednotky podpory života, jež v prostředí gravitace má tendenci narušovat rovnováhu.


BioSuit má být schopný působit podobným tlakem jako současný skafandr EMU (0,3 atm) . Celý prototyp má být hotový do tří let. I když studie prokazují životaschopnost celého konceptu, tým nevylučuje, že může narazit na nepřekonatelné překážky, které nedovolí realizovat oděv v této téměř ideální formě. I tak se může oblek stát součástí hybridních skafandrů, kde výrazně pomůže pohybu rukou, nohou a hlavně samotných prstů.

 

Zdroje informací:
http://www.kosmonautix.cz/viewtopic.php?f=16&t=92
http://www.kosmonautix.cz/viewtopic.php?f=24&t=15&p=6447#p6444 (nový ruský skafandr)
http://sk.wikipedia.org/wiki/Skafander
http://en.wikipedia.org/wiki/Bruce_McCandless_II
http://czech.ruvr.ru/2012_04_11/71405265/
http://novostey.com/science/news398647.html
http://spacesimulatorcenter.ru/eng3.html
http://mars500.imbp.ru/en/gallery/520_spacesuit_zvezda.html
http://www.jaxa.jp/article/special/eva/index_e.html
http://en.wikipedia.org/wiki/I-Suit
http://www.nasa.gov/externalflash/nasa_spacesuit/
http://en.wikipedia.org/wiki/Mark_III_%28space_suit%29
http://www.kosmonautix.cz/viewtopic.php?f=31&t=125
http://www.kosmonautix.cz/viewtopic.php?f=63&t=358&p=3088#p3088
http://www.kosmonautix.cz/viewtopic.php?f=31&t=803#p14107
http://en.wikipedia.org/wiki/Z-1_Suit
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011664_2012011337.pdf
http://www.kosmonautix.cz/viewtopic.php?f=23&t=326&p=20448#p20448
http://www.nasa.gov/offices/oce/appel/ask/issues/45/45s_building_future_spacesuit.html
http://www.kosmonautix.cz/viewtopic.php?f=31&t=366&p=4176#p4176
Zdroje obrázků:
http://www.nasa.gov/images/content/181830main_MarsSuit2.JPG
http://www.nasa.gov/externalflash/spacesuit_gallery/images/11.jpg
http://blogs.esa.int/promisse/files/2012/06/sokol-suits-fitcheck.jpg
http://www.nasa.gov/images/content/235791main_image_1098_946-710.jpg
http://upload.wikimedia.org/wikipedia/commons/9/9d/Sr-71suit.jpg
http://www.nasa.gov/externalflash/spacesuit_gallery/images/10.jpg
http://spacesimulatorcenter.ru/img/orlan.jpg
http://aviapanorama.ru/wp-content/uploads/2011/11/Mars-500_01-861.jpg
http://mars500.imbp.ru/gallery/520_spacesuit_zvezda/0005.jpg
http://mars500.imbp.ru/gallery/520_spacesuit_zvezda/0032.jpg
http://www.nasa.gov/images/content/617058main_45s_building_future_spacesuit3_full.jpg
http://ids.si.edu/ids/deliveryService?max_w=540&id=http://airandspace.si.edu/webimages/collections/full/A19730120000d.jpg
http://www.jaxa.jp/article/special/eva/img/aoki_img02.jpg
http://www.jaxa.jp/article/special/eva/img/wada_img03.jpg
http://www.jaxa.jp/article/special/eva/img/aoki_img05.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/5/52/Disconnecting_from_suit_port_during_field_tests.jpg/640px-Disconnecting_from_suit_port_during_field_tests.jpg
http://www.nasa.gov/externalflash/spacesuit_gallery/hi-resjpgs/15.jpg
http://upload.wikimedia.org/wikipedia/commons/c/c4/Suitport_on_small_pressurized_rover.png
http://www.ansoncheungdesign.com/projects/nasa14.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Z-1_Spacesuit_Prototype_-_kneeling_Nov_2012.jpg/384px-Z-1_Spacesuit_Prototype_-_kneeling_Nov_2012.jpg
http://www.spxdaily.com/images-bg/alan-stern-contingency-hypobaric-astronaut-protective-suit-chaps-bg.jpg
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130013106_2013012877.pdf
http://www.nasa.gov/images/content/617050main_45s_building_future_spacesuit1_full.jpg
http://www.nasa.gov/images/content/617055main_45s_building_future_spacesuit2_full.jpg
Psáno pro Kosmonautix a Osel.cz

Datum: 05.07.2013 08:16
Tisk článku

Pravda, nebo mýtus? - Mills Andrea
Knihy.ABZ.cz
 
 
cena původní: 399 Kč
cena: 339 Kč
Pravda, nebo mýtus?
Mills Andrea

Diskuze:

přežití ve vakuu

Petr Je,2013-07-10 21:55:15

Před lety jsem četl sci-fi povídku, ve které se posádka potřebovala přemístit z jedné vesmírné lodě do jiné a přitom neměla k dispozici skafandry. Připravili se na to pomocí intenzivního dechového cvičení a pomalým snížením tlaku. Poté vydechli a v přechodové komoře podstoupili velmi rychlou dekompresi. Během následujících dvou minut po odražení a letu vakuem přistáli na druhé lodi v jejíž přechodové komoře se opět velmi rychle přesunuli do běžného tlaku.
Chtěl bych se vás zeptat, zda je možné přežít takto rychlý přechod z tlaku jedné atmosféry(případně z o něco řidší) do vakua a naopak. A taky na to, zda by kosmonauté bez skafandru ve zdraví po dobu dvou minut přežili kosmické záření?
Děkuji za případnou odpověď a za zajímavý článek.

Odpovědět


Vojtěch Kocián,2013-07-12 07:48:04

Asi nejsem nejpovolanější, ale pokusím se odpovědět.
Kosmické záření by nejspíš po tak krátkou dobu nebyl závažný problém, pokud by se akce odehrávala pod ochranou magnetosféry Země. Kdyby posádka v původní lodi dýchala čistý kyslík za minimálního tlaku, tak by nemusela za tak krátkou dobu propuknout ani kesonová nemoc, i když nějaké komplikace s krevním oběhem by nastat mohly. Minimálně otoky, popraskání povrchových vlásečnic na citlivějších místech atd. Vydechnutí a neblokování dalšího výdechu by mělo zabránit poškození dýchacích cest. Ušní bubínky by to měly přežít (nízký původní tlak a dekomprese nemusí být explozivní). Osobně bych se nejvíc obával poškození očí. Ve vakuu se prakticky ihned odpaří veškerá vlhkost z povrchu těla a rohovka je na vyschnutí hodně citlivá. Nejspíš by pomohlo pevně zavřít oči, ale pak by byl problém s orientací v prostoru. Leda použít pevně přitažené plavecké brýle, které by únik vlhkosti omezily. Na kosmické lodi jich ale nejspíš moc nebude.

Podle mého by to přežít šlo, i když nejspíš by se od osob přepravovaných ve vakuu nedala očekávat nějaká aktivita. Ale někdo povolanější mě třeba opraví.

Odpovědět


Vojtěch Kocián to popsal docela přesně

Tomáš Kohout,2013-07-12 08:38:56

Nedávno se na tohle téma objevil článek na webu ČRo Leonardo: http://www.rozhlas.cz/leonardo/clovek/_zprava/kratke-preziti-ve-vakuu-je-mozne--1198835.
V rychlosti shrnu: člověk přežije půl minuty vcelku bez úhony, akorát musí hned vydechnout. Největším nebezpečím je skutečně vakuum, ostatní vlivy jako radiace, můžeme na tak krátkou dobu zanedbat.

Odpovědět

VÝBORNÝ ČLÁNEK

Jan Tomáštík,2013-07-09 10:59:35

Děkuji za něj!

Odpovědět

z-1 "raketak"

Lukáš Kříž,2013-07-08 10:33:19

A já kde jsem takové barvy skafandru už viděl. No, i vědci mají rádi animované pohádky :)

Odpovědět

Chybka?

Honza Toman,2013-07-05 17:11:07

“nastal čas pro nových koncepcí“ nedává příliš smysl. Není navíc “pro“?

Odpovědět


ano, to je překlep

Tomáš Kohout,2013-07-06 03:37:32

Je to tak. To "pro" je navíc. Četl jsem to po sobě několikrát. Bohužel se mi někdy stává, že ve svých článcích neodhalím chybu, přestože bije do očí. Mozek prostě vidí to, co chce a ne co tam ve skutečnosti je.

Odpovědět

super clanek

Daniel Konečný,2013-07-05 10:55:04

dekuji

Odpovědět


rádo se stalo

Tomáš Kohout,2013-07-06 03:50:15

Hlavně abychom je viděli v nějakém ostrém nasazení. Hodně fandím tomu poslednímu typu, i když ze zdrojů jsem měl dojem jako by se jeho tvořitelé pokoušeli krotit přehnaný optimismus.

Odpovědět


Pčipojuji své díky za článek

Ondi Vo,2013-07-06 12:51:59

Také se mi líbí ten poslední typ obleku, zejména na těle kosmonautky.

Ovšem nedovedu si představit balanci lineární pružnosti "obalu" hrudníku s tlakem dýchacího plynu v plicích.
Konec konců se musí objem hrudníku při nadechnutí zvětšit ... aspoň o tři litry. Leda, že by se ten objem "obalu" hrudníku o ty tři litry měnil nějakým mechanickým (pneumatickým) zařízením a kosmonaut tím pádem nedýchal vlastní silou, nýbrž by byl strojně ventilován, jako v případě tzv. železných plic.

Odpovědět


Nejde jen o plice

Jenda Krynický,2013-07-06 15:42:06

pokud by ten skafandr mel byt pouzity treba na Marsu, tak je treba pocitat s tim, ze kosmonauti stravi spoustu casu na ceste a to jim urcite pekne zahybe s obvodem zdaleka nejen pasu, takze pred startem peclive namereny a na miru udelany skafandr absolutně nebude sedět.

Odpovědět


Daniel Konečný,2013-07-06 15:49:48

Na me hodne zapusobil oblek z-1 "raketak", zda se hodne pokrokovy v pohyblivosti oproti soucasnym a oproti konceptu z MIT zase v blizke dobe pouzitelny. A ten styl je proste sympaticky:)

Odpovědět


z-1 je skutečně blízko realizaci

Tomáš Kohout,2013-07-07 03:27:13

Na svoji robustnost je opravdu překvapivě pohyblivý.

Biosuit se dá do jisté míry upravovat pomocí tkanic na různých částech těla. Máte pravdu v tom, že hrudník a břicho vykazuje během dýchání změny, které musí oblek pokrýt. Myslím, že finální verze bude mít počítačem řízené změny proporcí. Připadně ten materiál bude muset být podstatně více adaptabilní.

P.S. "kosmonautka" v BioSuitu je zmíněná sloučasná vedoucí týmu Dava J. Newman.

Odpovědět




Pro přispívání do diskuze musíte být přihlášeni
















Tento web používá k poskytování služeb, personalizaci reklam a analýze návštěvnosti soubory cookie. Používáním tohoto webu s tím souhlasíte. Další informace