Fotovoltaické články fungující i v noci  
Se solárními elektrárnami může být problém - když slunce svítí moc, nebo málo, případně vůbec. Ale co kdyby se fotovoltaické články dokázaly obejít bez slunečního záření?

Existují různé projekty, jak energii získanou v období nadbytku uložit a v období nedostatku uvolňovat. Jedním z nejnovějších je projekt Andasol ve Španělsku (více zde). Některé provozovatele fotovoltaických elektráren vysoké výkupní ceny energie motivují ke zcela netradičním řešením a kdyby diesel agregát nedělal takový hluk, zřejmě by jim to procházelo až dodnes. Více zde. I když tentokrát jde také o netradiční řešení, je poctivé.


Z tepla přímo elektřina

Většinu současné elektrické energie vyrábíme právě z tepla. Celkem ani nezáleží na tom, jestli spalujeme uhlí, plyn, biomasu nebo využíváme radioaktivitu uranu, principem je ohřev vody, která se proměňuje v páru roztáčející turbínu, jež pohání rotor generátoru. Vesměs se jedná o velká a drahá zařízení, v nichž přítomnost pohyblivých částí znamená zvýšenou možnost poruchovosti. A nelze je nijak výrazně miniaturizovat. Nejlepší by bylo převádět teplo na elektrickou energii přímo bez mechanického mezičlánku. Řešením  je tepelná fotovoltaika, neboli termofotovoltaika (zkratka TPV z anglického thermophotovoltaics). Zatím jsou zdroje na tomto principu velmi drahé, málo účinné a svoje místo našly zřejmě pouze na palubách družic pro výzkum hlubokého vesmíru. Tam, kde solární panely mají málo slunečního záření, družici pohání přeměna tepla z rozpadu radioaktivních izotopů přes TPV články na elektrickou energii. Více o různých systémech pro výrobu energie na družicích najdete zde.


U fotodiod, které pracují v infračervené oblasti spektra, je problém se šířkou pásma. Pro nejvyšší účinnost by bylo ideální je napájet tepelným zářením o jediné vlnové délce (monochromatickým). Ale jak takový zdroj získat? Vědci z Massachusetts Institute of Technology (MIT), pracující v Institutu pro vojenské nanotechnologie, dokázali podobné zařízení vyrobit. Jejich nejmenší prototyp mikroreaktoru o velikosti knoflíku produkuje 3x více energie, než srovnatelně velká Li-Ion baterie. Je poháněn spalováním butanu, takže „nabití“ je otázkou jen výměny zásobníku (cartridge) s palivem. Celý trik spočívá právě v dosažení monochromatického záření. V novém typu termofotovoltaického článku se o to stará tenká wolframová destička, v níž je pomocí paprsku horkého plazmatu vyleptána síť drobných otvorů s nanometrovými průměry. Při zahřátí destičky tato struktura funguje jako rezonátor zvyšující tepelné vyzařování v požadované vlnové délce, kterou fotodioda dokáže proměnit na elektřinu. Aby vědci co nejvíce zvýšili účinnost a v maximální míře využili emitované záření, před fotodiodu vložili ještě jednu destičku, jakýsi malý „sendvič“ z nanometry tenkých vrstviček křemíku a oxidu křemičitého, který v přírodě vytváří jeden z nejběžnějších minerálů – křemen. Tato polovodičová „překližka“ je projektována tak, aby působila jako filtr pro tu vlnovou délku infračerveného záření, které dioda transformuje v proud. Ostatní složky spektra pak odráží zpět do wolframové vrstvy, ta je pohlcuje a opět emituje, jenže s využitelnou frekvencí.
Výhodou je, že článek funguje pro různé zdroje tepla. Ten nejmenší prototyp zatím na propan nebo butan, ale v podstatě je jedno čím se wolframová struktura bude ohřívat, třeba i koncentrovanou sluneční energií. Pro „dálkové“ kosmické lety se samozřejmě uvažuje s radioaktivním zdrojem a soustava termofotovoltaických článků by tak mohla dodávat potřebnou elektrickou energii po mnoho desítek let. Protože projekt je spolufinancován americkou armádou, lze vytušit, že jeho primárním úkolem je najít dostatečně efektivní, od vnějších podmínek nezávislý, lehký a uživatelsky nenáročný zdroj elektřiny pro napájení přístrojů s malou spotřebou pro vojáky operující tam, kde se nelze připojit do zásuvky. Podle slov Ivana Celanovice, jednoho z členů výzkumného týmu, kdyby se jim podařilo zvýšit hustotu energie, pak by malý TPV článek mohl na jednu náplň "pohánět" smartphone celý týden.

 

Pramen: MIT 

 

  V MIT vyvinuli technologii, kterou lze zhotovit do wolframové destičky miliardy prohlubní v nano-rozměrech. Vhodnou volbou nanostruktury lze dát materiálu nové optické vlastnosti. Zatím se tento princip využíval při vylepšování účinnosti laserů a u světlo emitujících diod. Tentokrát to vědci z MITu využili v kombinaci s fotovoltaickým článkem, kterému wolframová deska dodává záření ve spektru, které dokáže zužitkovat nejlépe. Dlaždice s jamkami se připravuje kombinací litografie a leptání. Nejprve se laserem vytvoří maska s požadovanými otvory a ta se kopíruje do vrstvy wolframu ve vakuové komoře pomocí chemicky reaktivního plazmatu generovaného elektromagnetickým polem. 
Na detailu jamky je vidět jak bílé světlo, při němž byla fotografie pořízena, se difrakcí mění na zelené.  (Kredit: MITEI
   Základem fotonického krystalu je volframová struktura s válcovitými prohlubněmi, která po rozžhavení vyzařuje světlo ve změněném spektru. Každá jamka působí jako rezonátor. Jde v podstatě o stejný princip, jaký známe z akustických rezonátorů a jeho jednoduché formy – ulity mořského plže přiloženou k uchu. Rozdíl je jen v tom, že místo zvukových vln jde tentokrát o světlo a jeho infračervené spektrum. (Kredit: MITEI)
   Fotonické krystaly jsou v generátoru dva. Ten vlevo s wolframovou destičkou je zahříván na vysokou teplotu a emituje záření. Ten vpravo, dosedající na fotovoltaickou diodu, je tvořen křemíkem a oxidem křemičitým. Část záření, která na pravou stranu dopadá v nevyhovujícím spektru (fotodioda jej nezpracuje) se odráží zpět směrem k wolframovému rezonátoru. V něm nano-prohlubně přemění část nevhodné délky na na záření v infra spektru a odrazí ho zpět na pravou stranu směrem k fotodiodě. (Kredit: MITEI)
   Průměr důlků, jejich hloubka a vzájemná vzdálenost rozhoduje o tom, jakou charakteristiku (vlnovou délku) emitované záření bude mít. V MITU testují průměry děr od 0,9 – 1,1 mikrometru o hloubce 1,5 až 2,8 mikrometru. Nejmenší vzdálenost, jakou se jim mezi jednotlivými důlky podařilo dosáhnout je 0,1 mikrometru.  (Kredit: MITEI)
   Sada mikro-reaktorů různých velikostí vyvinutých v MIT. Trubičky trčící ven slouží k napájení článku palivem (butanem) a k odvodu odpadních produktů. Na těchto obrázcích jsou reaktory bez fotodiod. V kompletní verzi reaktor přeměňuje energii paliva na elektrický proud s účinností okolo 3%. Nezdá se to mnoho, ale tyto generátory dávají třikrát více energie, než lithiová baterie srovnatelné velikosti a hmotnosti. To znamená, že vydrží třikrát déle, aniž by je bylo potřeba „dobíjet“. A když přestanou pracovat, stačí jen vyměnit náplň s palivem, stejným jako se plní zapalovače (butan, propan) (Kredit: Justin Knight, MIT)



Autor: Martin Tůma
Datum: 01.08.2011 11:44
Tisk článku

Související články:

Že by konečně „rodinný“ vysoce účinný palivový článek?     Autor: Josef Pazdera (03.06.2012)
Nový typ solárního článku mění na elektřinu světlo i teplo     Autor: Dagmar Gregorová (17.08.2010)
Solární články nanášené jako barva     Autor: Dagmar Gregorová (26.08.2009)



Diskuze:

odkaz na kachnu

Petr Ba,2011-08-04 13:33:51

Docela zajímavý článek poněkud shazují neověřené odkazované zdroje. Pokud tedy odkaz nebyl míněn jako nepochopený žert.
Na odkazu http://www.scinet.cz/zazrak-solarni-elektrarny-produkuji-elektrickou-energii-i-v-noci.html je vidět, že si novinářská kachna o nasvěcování FV panelů stále žije svým životem. Když budeme uvažovat pro jednoduchost účinost světelného zdroje 50% a FV panelu při převodu světelné energie na elektickou 10%, tak, nemýlím-li se, dostáváme výslednou účinost této sestavy 5%. K tomu ještě nutné počítat s pořizovacími náklady nasvětlovací soustavy a každodení manipulaci s ní, aby přez den panely nestínila. O tom jak by taková noční FVE musela "nenápadně" svítit do okolí se asi netřeba rozepisovat, stejně nenápadně by se točili i elektroměry rozvodné společnosti.
Také prodej elektřiny z dieselagregátů za výkupní ceny FV je, vzhledem k ceně nafty a pořizovacím nákladům na dieselagregát, na hranici rentability. Tedy pokud nenechavci nemají i zdroj a palivo za pět prstů.
Korekce kachny byla, že u zkontrolovaných tisíců FVE našla kontrola nedostatky v zapojení a pokus o podvodné napojení na diesely řádově u jednotek FVE.

Odpovědět


Nenasvecovali

Martin Tůma,2011-08-04 15:41:17

Dobry den,
z clanku jsem nepochopil, ze by neco nasvecovali, proste ten proud z generatoru hnali primo do site. To kachna neni, za to uz snad i soud rozdal tresty.

Odpovědět

Rozmiestnenie jamiek.

Rudolf Dovičín,2011-08-02 15:04:31

Neskúsili aj jamky ako "vpísané" do šesťuholníkov miesto do štvorcov?
Mohli by byť bližšie a rovnomernejšie rozmiestnené.

Odpovědět

Pár poznámek k možnostem TPV

Vladimír Wagner,2011-08-01 21:48:55

TPV nemůže být využita při zpracování odpadního nebo jinak nevyužitelného tepla. Je založeno na emisi infračerveného světla a potřebuje, aby maximum záření vyzařované rozžhaveným materiálem emitoru bylo na správné vlnové délce. Teploty by se tedy měly v optimálním případě pohybovat okolo 1000oC. Musí mít velmi intenzivní zdroj tepla. Jejich efektivita není nijak příliš velká, u prezentovaných systémů (viz originální článek) okolo tří procent. Například využití termočlánku je z hlediska efektivity daleko výhodnější. Standartně okolo šesti procent a dosahuje se až deseti. A termočlánky jsou také bez pohyblivých částí a tedy velice spolehlivé ( http://www.osel.cz/index.php?clanek=3838 ). Pokud se použije Sterlingův motor, tak je efektivita standardně 20 procent. Ten už však má pohyblivé části. Výhodou TPV, že jej lze udělat daleko menší. Pro zmíněné vlastnosti je zatím jejich využití jen velmi speciální. Pro extrémně malé zdroje (s nízkým výkonem) do vysoce miniaturizovaných zařízení. A v aplikacích, kde cena a efektivita zařízení není příliš prioritou (vojenské a kosmické aplikace), i když i tam se zatím používají ve velmi omezené míře. Pochopitelně se to v budoucnu může změnit, pokud se podaří jejich efektivitu radikálně změnit. Pokud se týká jejich využití v energetice, tak tam je to zatím úplně mimo realitu a v ceně a efektivitě jsou hrozně daleko i za fotovoltaikou a tím více za různými druhy tepelných elektráren. Myslím, že toto je nutné k tomuto článku dodat.

Odpovědět

TPV versus palivové články

Vojtěch Kocián,2011-08-01 13:33:16

Chápal bych využití TPV při zpracování odpadního nebo jinak nevyužitelného tepla, ale pro malý přenosný zdroj mi připadá vhodnější nějaký druh palivového článku. Dají se napájet nejen vodíkem, ale i uhlovodíky (například snadno skladovatelným methanolem) a rozhodně mají účinnost vyšší než 3% a miniaturizací by se podobné velikosti také dosáhlo.
Na druhou stranu, není důvod, aby se tato cesta důkladně neprozkoumala.

Odpovědět


Vice zdroju tepla

Martin Tůma,2011-08-01 14:35:29

Ja bych prinos videl v "univerzalnosti" napajeni - tedy zdroje tepla. Ta konstrukce, ktera v podstate maximalizuje vyzarovani na dane frekvenci potom muze byt napajen Sluncem, ohnem, teplem radioaktivniho rozpadu, proste celou radou jinych tepelnych zdroju. Chapu napajeni butanem jako postup vhodny pro laboratorni zkouseni a pro vyvoj technologie, ale ne nutne jako zaklad komercniho zarizeni.
Krome toho methanol je taky alkohol a kdyz je nouze, tak obvzlaste vojak dokaze leccos prekousnout :)

Odpovědět


Tento web používá k poskytování služeb, personalizaci reklam a analýze návštěvnosti soubory cookie. Používáním tohoto webu s tím souhlasíte. Další informace